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Table S 1: Comparison between site-based and rate-based VSSM schemes 

step what is calculated? site-based rate-based 

update update 

𝑘𝑥,𝑦,𝑖 𝑛𝑘 

(rate constants on site x, y, i) 
(number of occurrences of rate 

constant 1 ≤ 𝑘 ≤ 𝑀) 

accounting Γ Γ =  ∑ 𝑟𝑥,𝑦,𝑖
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𝑘
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𝜈

𝑘=1

 

(j runs over (x,y,i)) 
2. select an (x,y,i) from list ν at 

random (𝜌2). 

 

 

1. Additional information about the subtractive scheme 

1.1. Numerical accuracy 

We have shown that updating the rate sum Γ in a subtractive scheme improves overall performance and 

turns the scaling of the accounting step from ℴ(𝑁) to ℴ(1). However, this approach is not without 

drawbacks. One problem stems from the fact that floating point numbers cannot be accurately 

represented in binary, and numerical precision is finite (floating point error). For instance, in Fortran 

single and double precision, only seven and fifteen digits are stored, respectively. This makes it 

impossible to correctly compute small changes of large numbers (such as 1016 + 1 ). In KMC 

simulations, reaction rates frequently differ by several orders of magnitude, which make Γ calculated by 

the subtractive accounting scheme numerically imprecise, especially in stiff systems, where the highest 
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and lowest rate constants differ by several orders of magnitude. In our example simulation, the final 

values of Γ are output together with the timing information, and one can clearly see that the final results 

slightly differ between the standard and subtractive accounting schemes, and increasing the number of 

steps in the simulation increases this deviation. This is not a bug, but a result of the floating-point error, 

which can cause errors in the simulation under certain circumstances. After discussing the origin of this 

error, we propose an efficient error tracking and handling algorithm. 

The same problem does not arise in the standard accounting scheme, where Γ is reset and calculated 

from scratch in every iteration (Eq. 6), as the numerical error of Γ depends only on the its value 

(approximately 10−7Γ and 10−15Γ for single and double precision, respectively). In the subtractive 

scheme, on the other hand, Γ is reused in subsequent iterations, so that the numerical error of Γ depends 

on all of its previous values, i.e., the error accumulates over the course of the simulation. If Γ is stored 

in single precision, the error after 107 steps becomes greater that Γ itself. This can cause errors in the 

selection of reaction event in cases where 𝜌1Γsubtractive (with 𝜌1 a random number) happens to be larger 

than Γexact. Another possible side-effect is that Γsubtractive can assume negative values, which is of 

course unphysical. This is not a very big problem in practical application, however, as this kind of error 

is easy to manage as will be shown in the following.  

 

Figure S 1: Error handling algorithm in the Subtractive Γ calculation scheme. Highlighted in red and blue are 

the two sanity checks and subsequent error correction. 

First of all, we strongly advise on storing Γ, 𝛾  and reaction rates in double precision. This alone 

sufficiently mitigates the error in many cases. For stiff systems and lengthy simulation runs, we have 

devised a reliable error tracking and handling algorithm as schematically shown in Figure S 1. The 

sample code for error handling in the Subtractive Scheme is included in the linear_search, 

supersite_search and subtractive_gamma functions of the supersite.f90 program. 



The algorithm keeps track of an error estimate ΔΓ by adding 10−15 times the largest term in Eq. 9 to the 

previous ΔΓ in every step (bottom center white box in Figure S 1): 

 ΔΓ → ΔΓ + 10−15 max(Γold, γold, γnew). Eq. S 1 

The error estimate ΔΓ then indicates the order of magnitude of the error, and Γ should be recalculated 

from scratch (Eq. 6) either if ΔΓ/Γnew exceeds a certain threshold value, for instance 10−5, or Γnew <

0 after evaluating Eq. 9 (blue part of Figure S 1). In addition, the search algorithm needs an error handler 

that detects if 𝜌1Γsubtractive points to a non-existing elementary step (red part of Figure S 1). This is the 

case when the search algorithm finishes its loop without finding an elementary step ν that fulfills the 

condition 
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, Eq. S 2 

in which case Γ needs to be recalculated as well, and the search is reattempted. Note that this process is 

drawn as a loop in Figure S 1, and in fact is implemented as a recursive function in our sample program. 

However, the search should always succeed after re-evaluation of Γ, and if more than two search 

attempts are made in a row, this indicates errors unrelated to the floating-point error discussed here.  

In many simulations, however, these scenarios never occur as Γsubtractive  is a sufficiently good 

approximation of Γexact in non-stiff systems with double precision. But even in a stiff system like the 

HCl oxidation over RuO2(110), the recomputation of Γ occurs only about once in 106 steps, which is a 

small price to pay for overall vastly superior computation speed and scaling (cf. Section 3.4). In some 

cases, however, frequent recalculation of Γ may noticeably impact scaling and run time, and the error 

handling proposed here may be undesirable. But even in such cases one does not need to give up on the 

Subtractive Scheme, as the error can also be efficiently mitigated by maintaining several variables lists 

for storing and evaluating Γ, 𝛾𝑜𝑙𝑑 and 𝛾𝑛𝑒𝑤, where contributions on different orders of magnitude are 

handled separately, each retaining its respective accuracy until they are finally added together. This 

approach would entirely remove the need to recompute Γ from scratch, instead adding a larger effort of 

ℴ(1). We have yet to come across a system where this option would be a good choice and do not provide 

sample code for it, but propose this method as a alternative strategy to handle the floating-point error in 

the Subtractive Scheme. 

 

1.2. Other applications of the Subtraction Scheme 

As indicated at the start of Section 3.2, while Γ is definitely the most important quantity to address with 

the Subtractive Scheme, it is not the only that can be treated in this fashion. In principle, it can be applied 

to any quantity whose evaluation involves a single sum over all (or many) sites of the lattice that 

undergoes only a small, localized change between successive steps. Possible applications include, but 



are not limited to, surface coverages and total surface energies. Beside these trivial options, however, 

the Subtractive Scheme offers a way to treat long-range interactions in the update step efficiently.  

 

Figure S 2: Illustration of the subtractive energy update scheme for adsorbates with long-range lateral 

interactions. Here a reaction event occurs on the orange site, and the orange area indicates the updated zone of 

interacting sites. If the rate on the green site is to be updated, rather than re-evaluating the whole cluster 

expansion (for the whole green area), only the terms that involve both the orange and the green site need to be 

updated, for instance the pairwise interaction, 𝜀2. 

Consider a surface with charged adsorbates and long-range interactions. Assuming a cutoff radius of 

15 Å, the interaction radius would contain 4-5 sites on the RuO2(110) surface, as shown in Figure S 2. 

A cluster expansion that contains only pairwise interactions at R = 5 would have 89 terms (including the 

zero-coverage adsorption energy). After a reaction event on the orange site, the rates on all 89 interacting 

sites (indicated in light orange) need to be updated, and each of these 89 surrounding sites (for instance, 

the green site) again has 89 sites within its interaction radius (drawn in light green), resulting in 89∙89 

interaction terms evaluated. However, considering that a cluster expansion considers only interaction 

clusters for specific sites, we realize that for the green site, only one pairwise 𝜀2 interaction term changes 

due to the reaction event (indicated by arrows). It is therefore unnecessary to re-evaluate the whole 

cluster expansion. Instead, one can store the energy of each adsorbate in each step, and then the energy 

update reads, similar to Eq. 9: 

 𝐸new,x,y → 𝐸old,x,y − 𝜀2,𝑜𝑙𝑑 + 𝜀2,𝑛𝑒𝑤 Eq. S 3 

Here, 𝐸new,x,y and 𝐸old,x,y stand for the new and old adsorption energies on site (x, y), and 𝜀2,𝑜𝑙𝑑 and 

𝜀2,𝑛𝑒𝑤 stand for the old and new interaction energies of the pairwise interaction subject to the update. 

This reduces the energy update to three terms to be evaluated (opposed to 89) if only pairwise 

interactions are considered, regardless of the range of lateral interactions (89∙3 terms in total). Of course, 

this approach can be combined with the Supercluster Contraction (in which case the respective 

superclusters take the positions of 𝜀2,𝑜𝑙𝑑 and 𝜀2,𝑛𝑒𝑤 in Eq. S 3). This is also applicable to shorter-range 

interactions, but the expected boost in performance for our test system will be marginal at best because 

our supercluster contraction has already been reduced to just a few terms at short interaction range.  

Although surface adsorption systems with long-range interactions have so far not been studied with 

KMC methods, there already are possible applications for the Subtractive Scheme for updating the 



energy. For instance, on metal surfaces, where the density of undercoordinated sites is much higher than 

on oxide surfaces, an interaction model can easily contain eight nearest-neighbor (8NN) and higher 

interactions within a relatively “short” interaction radius as shown by Bajpai et al. for the NO-O-vacancy 

system on Pt(111) [1]. Or, if different site types are considered (on top, bridge, hcp, fcc sites) on metal 

surfaces, even Cluster Expansion models with short-range interactions can already include an impressive 

number of terms, for instance the O-vac cluster expansion for the Pt(321) surface by Bray et al. [2, 3]. 

This approach may also be useful for the study of defect in the bulk, where interactions can have quite 

a long range and the interacting sites form a sphere around the event center. Even for short-range 

interaction, many sites need to be updated in 3D systems, which results in a potentially high 

computational effort in KMC simulations employing such models.  

 

2. Additional information about the supersite algorithm 

2.1. Choice of 𝒔𝒙 and 𝒔𝒚  

The previous algorithm contains the size of the supersite, 𝑠𝑥 and 𝑠𝑦, as parameters, and the performance 

of the algorithm is sensitive to the choice of these parameters. The attentive reader may have noticed 

that the cases where 𝑠𝑥 = 𝑠𝑦 = 1 or 𝑠𝑥 = 𝑛𝑥 and 𝑠𝑦 = 𝑛𝑦, i.e., where a supersite contains either one or 

all the sites on the surface are similar to the linear search algorithm, and give similar performance as the 

number of operations and comparisons is the same. The run time of the Supersite Search algorithm for 

three different lattice sizes (small: 36 × 36, medium: 144 × 144 and large: 576 × 576) was measured 

using the sample program supersite.f90 for the same cluster expansion as before (evaluated by 

Eq. 1) and is shown in Figure S 3a. 



 

Figure S 3: a) Total run time of our sample program with Supersite Search, local update and the Subtractive 

Scheme from Section 3.2  for different lattice sizes (small: 36 × 36 , medium: 144 × 144  and large: 

576 × 576) for different choices of the number of supersites, employing literal evaluation of the cluster 

expansion (Eq. 1). b) Run time comparison between literal cluster expansion evaluation and SC D for the 

medium (144 × 144) lattice. 

The total time for 105 is plotted over the number of supersites, normalized by the square root the total 

number of sites. For all three lattice sizes, a curve with a pronounced minimum is obtained, which 

appears as a parabola in the log-log plot, indicating that both very large (left end) and very small (right 

end) supersizes are not advantageous. The minima of each curve are located close to one, i.e., where the 

number of supersites is equal to the square root of the total number of sites. This behavior is as 

theoretically expected for the two-level scheme and identical to the observation by Maksym [4].  

The minimum appears quite shallow for the small lattice (Figure S 3a, blue curve), which is due to the 

fact that the Supersite Search, which scales as ℴ(√𝑁) is coupled sequentially to several ℴ(1) steps, 

namely the local update, which includes the energy evaluation, and the Subtractive Scheme for the 

evaluation of Γ . For small lattice sizes these ℴ(1)  parts are actually what determines the overall 

performance. Replacing, for instance, the literal evaluation of the cluster expansion (Figure S 3b, blue 

curve) by the Supercluster Contraction SC D (Figure S 3b, orange curve) in the medium lattice 

simulation significantly decreases the minimum run time, but does not otherwise alter the shape of the 

curve.  
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